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Noise produced from a variety of human activities can affect the physiology

and behaviour of individual animals, but whether noise disrupts the social

behaviour of animals is largely unknown. Animal groups such as flocks of

birds or shoals of fish use simple interaction rules to coordinate their move-

ments with near neighbours. In turn, this coordination allows individuals to

gain the benefits of group living such as reduced predation risk and social

information exchange. Noise could change how individuals interact in

groups if noise is perceived as a threat, or if it masked, distracted or stressed

individuals, and this could have impacts on the benefits of grouping. Here,

we recorded trajectories of individual juvenile seabass (Dicentrarchus labrax)

in groups under controlled laboratory conditions. Groups were exposed to

playbacks of either ambient background sound recorded in their natural

habitat, or playbacks of pile-driving, commonly used in marine construction.

The pile-driving playback affected the structure and dynamics of the fish

shoals significantly more than the ambient-sound playback. Compared to

the ambient-sound playback, groups experiencing the pile-driving playback

became less cohesive, less directionally ordered, and were less correlated in

speed and directional changes. In effect, the additional-noise treatment dis-

rupted the abilities of individuals to coordinate their movements with one

another. Our work highlights the potential for noise pollution from pile-

driving to disrupt the collective dynamics of fish shoals, which could have

implications for the functional benefits of a group’s collective behaviour.
1. Introduction
Human activities, such as urbanization, resource extraction, transportation, and

energy production, generate considerable noise. Since the Industrial Revolution,

these human-generated noise sources have resulted in major changes in sound-

scapes across the globe, both due to an increase in sound levels and the addition

of sounds that are different from those arising from natural sources [1–3].

Consequently, anthropogenic noise is now recognized as a pollutant of inter-

national concern, being included in legislation such as the US National

Environment Policy Act and the European Commission Marine Strategy Frame-

work Directive. To inform policymakers, to develop effective management

strategies, and to design suitable mitigation methods, detailed information on

the organismal impacts of anthropogenic noise are needed.

There is mounting experimental evidence that anthropogenic noise can have

a variety of negative physiological and behavioural effects on individual ani-

mals, ultimately affecting their survival and reproductive success [4–7]. For

example, noise from human activities can directly cause injury or hearing
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loss in some species [8,9], or as a consequence of masking (i.e.

reducing the signal-to-noise ratio), can impair the ability of

animals to communicate [10–12]. Further, noise can be per-

ceived as a threat, be a distraction, or can cause increased

stress, in turn impairing an animal’s ability to forage effi-

ciently [13,14], respond appropriately to information about

predation risk [15–17], perform adaptive behaviours during

habitat-selection [18,19], or reproduce successfully [20,21].

However, despite the abundance of group-living species,

there has been relatively little research on how the social be-

haviour of animals is affected by anthropogenic noise (but see

[22–26]). An understanding of noise effects in this regard is

crucial because many animals rely on such behaviours for

their survival and reproductive success [27,28], and often

adjust their social behaviour in response to risk [29,30].

Thus, any potential impacts of noise on social beha-

viour could have fundamental ecological and evolutionary

implications for social species.

The impacts of anthropogenic noise can be particularly

prevalent in aquatic environments, where sound travels

further and faster before attenuation than in air [31]. Fish,

in particular, are known to be affected by noise in a variety

of ways [6,32]. For example, acoustic communication between

individuals may be disrupted in the presence of noise, fish

may move away from noisy sound sources, and in extreme

circumstances, noise can even result in injury or death

[6,32]. There has also been recent experimental evidence

that anthropogenic noise can negatively affect the foraging

[14,33], anti-predator [16,34], and parental care [21,23] behav-

iour of individual fish. It is estimated that approximately 50%

of fish species form shoals during their lifetimes [35], with

juvenile fish regularly shoaling in inshore areas [36] which

are often subject to noisy exploration and construction pro-

jects [37]. Shoaling is achieved when individuals use simple

interaction rules, including speed and direction changes, to

coordinate their movements with near neighbours [38–40].

Information about neighbours’ movements and positions is

acquired through the lateral-line and visual systems [41,42],

and there are good reasons to suspect that noise generated

by human activity might affect shoaling dynamics.

Noise could impact the ability of individuals to coordi-

nate their movements by masking information about

neighbours’ positions that could have been detected through

the lateral line (uni-modal effects). Alternatively, or in

addition to masking effects, distraction or stress could

impair the coordination of individuals’ movements by com-

promising an individual’s ability to process information in

another sensory channel (i.e. vision or olfaction), otherwise

known as ‘cross-modal’ effects [43]. There is some evidence

that noise produced by motorboats can affect the shape and

structure of bluefin tuna (Thunnus thynnus) schools [22],

and this could impair two of the key benefits of shoaling.

First, shoaling provides anti-predatory benefits through

dilution, confusion, and selfish-herd effects, with individuals

in larger, more cohesive groups having proportionally less

risk than individuals in smaller, less cohesive groups

[44–47]. Changes in the cohesion of groups, therefore,

could act to increase predation risk. Second, shoaling pro-

vides individuals access to social information, whereby

information about detected threats or resources can be gath-

ered by copying the movement decisions of others [48–51].

Disruption to the abilities of individuals to copy these

decisions could have considerable implications for how
individuals in groups detect resources or avoid predators.

High-resolution data on the positions and movements of

individuals in shoals are needed, therefore, to measure

how individuals are interacting in groups, and hence how

anthropogenic noise may affect these interactions.

Here, we use a laboratory-based experiment to ask how

anthropogenic noise (specifically playback of pile-driving

noise, an impulsive sound source) impacts the shape, organ-

ization, and dynamics of European seabass (Dicentrarchus
labrax) shoals. Seabass are known to be affected by playbacks

of anthropogenic noise [52,53], making them a model species

to use in these experiments. Laboratory-based experiments

cannot perfectly replicate real-world sound fields or natural

behaviour [54,55], but they allow tight control of other vari-

ables [55], as well as the collection of detailed (high spatial

and temporal resolution) tracking data on shoaling behav-

iour, which has only recently been recorded in the wild

[56]. We predicted that if the additional noise was perceived

as a threat [57], the seabass would form denser, more direc-

tionally ordered shoals, with increased coordination of

speed and direction changes, in the pile-driving treat-

ment compared to an ambient-sound control treatment. If,

however, the additional noise masks important information,

or causes stress or distraction [4,58], the seabass would be

predicted to form less cohesive and directionally ordered

shoals, with reduced directional and speed coordination,

in the pile-driving treatment compared to times with

ambient-sound playback.
2. Material and methods
(a) Experimental subjects
Juvenile sea bass were sourced from Ifremer (Plouzane, France)

and transported to the University of Exeter, where they were

held for two months before being transported to the University

of Bristol aquarium facilities. The fish were held in 40 � 70 �
34 cm and 20 � 70 � 34 cm (width � length � height) 5 mm

glass stock tanks that contained artificial plants. Fish were gener-

ally fed daily on a uniform commercial fish food diet (Perla MP

Pellet, Skretting, Norway) except during a 7-week period in

February–March 2015 when half of them were only fed three

times per week. In this study, fish were randomly allocated

to the sound treatments regardless of this feeding regime differ-

ence. Water temperature was 15.7+0.28C; lighting was kept on a

12 L : 12 D cycle; salinity was maintained between 35 and 36

parts per thousand (ppt). Experiments were conducted in July

2015 when the fish measured 9.7+0.7 cm (mean+ s.d.) standard

body length. The size of the fish did not differ between treatments

(see below; Linear Model (LM): F1,118 ¼ 0.10, p ¼ 0.75).

(b) Recordings and playbacks
Original field recordings of offshore pile-driving in Swansea Bay,

UK, were made between 87 and 200 m from the sound source

[52,53]. Pile-driving at this site involved a 1.2 m diameter mono-

pole being driven around 25 m into the seabed at a water depth

of 6.5 m. The recordings of this process were made with a Hi

Tech Inc. HTI-99HF hydrophone with inbuilt preamplifier (man-

ufacturer calibrated sensitivity 2204 dB re 1 V mPa21, 20–125 000

Hz frequency range) and a data logger (RTsys EASDA, 44.1 kHz

sampling rate). Recordings of ambient coastal sound were made

at Portsmouth, Plymouth, and Gravesend, UK, using a Hi Tech

Inc. HTI 96-MIN hydrophone with inbuilt preamplifier (manu-

facturer calibrated sensitivity 2164 dB re 1 V mPa21, 20–30 000

Hz frequency range) and a digital recorder (Roland Edirol

http://rspb.royalsocietypublishing.org/
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R09HR 24 bit, 44.1 kHz sampling rate) [52,53]. For ambient-

sound recordings, the hydrophone was positioned at 1 m depth

20–40 m offshore. All recordings were made during low to

moderate wind speeds.

The original recordings of pile-driving noise and ambient

sound were used to create three tracks per sound treatment; a

random part of the relevant recording was used in each case

(as in [52,53]). Multiple playback tracks per sound treatment

were used to reduce pseudo-replication issues. All ambient

playback tracks were 5 min in duration, and the pile-driving

playbacks were 10–30 s in duration, with each track looped for

the 5 min playback period. All the pile-driving playbacks had a

pile-driving rate (time between pile-driving events) of 1.7 s.

All tracks were created using Audacity 1.3.13 (http://audacity.

sourceforge.net/).

Tracks were played back via an underwater loudspeaker

(Aqua30; frequency range 80–20 000 Hz: www.dnh.no), an

amplifier (Kemo Electronics GmbH; 18W; frequency response

range approx. 40–20 000 Hz), and a laptop (Toshiba Portege

R930-1CW), as in [34,52,53]. To measure the recordings of the

playbacks and any ambient sound in the room, we placed a

hydrophone (HTI 96-MIN) in the middle of the experimental

tank, 5 cm above the tank bottom. Recordings of the sound

during the trials were made using a digital sound recorder

(Sony PMC-M10, 44.1 kHz sampling rate) connected to the

hydrophone. Because of unresolved challenges in measuring par-

ticle motion in small tanks at the time of the experiment, acoustic

conditions were assessed in the sound-pressure domain only. In

this experiment, we do not establish absolute values for sensi-

tivity, but rather explore the potential impact of the change in

additional sound on the fish’s behaviour (see also, for example,

[34,52,53]).
(c) Acoustic analysis
All sound recordings were analysed in MATLAB (v. 2013a and

2017a) using pamGuide [59] and paPAM [60]. Spectrograms

(see the electronic supplementary material, figure S1) were calcu-

lated for 1–2 000 Hz (the frequencies most likely to be of

relevance to seabass [61]) using a Hann evaluation window,

50% overlap, 0.1 s window length over 20 s recordings. Cumulat-

ive sound exposure level (SELcum) was calculated for the whole

5 min exposure period, whereas sound-pressure level (SPL) was

calculated over 20 s recordings (electronic supplementary

material, table S1). Zero-to-peak level, 90% energy envelope,

rise time, and single-strike sound-exposure level (SELss) were

calculated using an average of five randomly selected pile strikes

(electronic supplementary material, table S1).
(d) Experimental protocol
Trials took place in an octagonal arena located at one end (10 cm

from the wall) of a 2.5 � 1.25 m aluminium tank lined with a

white plastic PVC pond liner (electronic supplementary material,

figure S2). The arena was made of white 68 � 43.4 cm Perspex

panels, so the narrowest width of the arena was 105 cm. The

loudspeaker was located at the other end of the tank, 20 cm

from the wall facing the arena and half way along the width

of the tank. The loudspeaker was suspended using string to be

2 cm above the bottom of the tank. Water depth was 10 cm

and temperature and salinity conditions matched those in the

stock tanks. The whole tank was covered by a cuboid frame

and white sheeting to minimize disturbance and diffuse over-

head fluorescent lighting to minimize reflections on the water

surface. A Panasonic X920 camcorder, positioned centrally and

193 cm above the water’s surface, was used to film the arena at

a resolution of 1 920 � 1 080 pixels and frame rate of 59 frames

per second.
Our focus in this study was the effect of exposure to

additional noise; comparisons were made to individuals that

experienced control playbacks (of recordings of ambient coastal

noise) but were otherwise from the same cohort and held

under the same conditions. Four fish were netted from the

same stock tank and transferred gently to the test arena. Juvenile

seabass generally occur in small group sizes [62], and we chose

groups of four fish as this is within the range of group sizes

used in previous studies on these fish [63–65]. The groups of

four fish were given 15 min to acclimatize, during which time

no playback occurred, with the last 5 min of this period filmed

(termed ‘1st half of trial’ hereafter). One of the two sound treat-

ments (pile-driving noise; n ¼ 15 groups, or ambient sound; n ¼
15 groups) was then played to the fish for 5 min (termed ‘2nd

half of trial’ hereafter), with filming continuing during this

period. The trial order of sound treatments was determined by

a complete random block; i.e. for each pair of trials (1st and

2nd, 3rd, and 4th, etc.), one of each treatment was given, but

in a random order within that pair. Which of the three replicate

recordings was used for each treatment was randomly deter-

mined. Each fish was tested only once. Fish were not fed on

the day of testing until after the trials.

(e) Response measures
The 10 min videos from each trial were converted to MPEG-4

with Handbrake 0.10.5 (https://handbrake.fr/). idTracker [66]

was used to track the x and y coordinates of each fish throughout

each trial. All subsequent analyses were performed using

MATLAB (2016a) and followed similar methods to [67–69].

The parameters associated with the spatial and directional organ-

ization, as well as the movement dynamics of the fish, are

detailed below. Measures were calculated separately for each

fish in the group. All variables were calculated for the 1st (no

playback) and 2nd (playback) half of each trial separately.

(i) Spatial and directional organization of the shoals
We first calculated measures associated with the cohesiveness of

shoals including the mean distance each individual was to the

shoal’s centroid, and the modal nearest-neighbour distance of

each individual. The modal nearest-neighbour distance rep-

resents the distances that pairs of individuals are most

commonly observed apart [39,68]. We then calculated the dis-

tance from each fish to its nearest-neighbour perpendicular to

their direction of travel (i.e. how far apart side-by-side) and

parallel to the direction of travel (i.e. how far apart in front-or-

behind one another). We further calculated the bearing angle to

a fish’s nearest neighbour, which represents the direction that a

neighbour was most likely to be found in relation to the focal

individual [38]. We treated bearing angles to the neighbour

ahead or behind of the focal fish separately for ease of interpret-

ation in the statistical models. A bearing angle of 908 would

represent a neighbour that was directly to the side of a focal indi-

vidual, whereas a bearing angle of 08 or 1808 would represent a

neighbour that was, respectively, directly in front or behind a

focal individual. We also calculated the heading difference

between nearest neighbours, i.e. the angle between the direction

nearest neighbours were facing. This measures how closely

aligned nearest neighbours in the shoals were, effectively

measuring their directional organization [70]. The heading differ-

ence ranges from 08 (individuals were facing in the same

direction ¼ high alignment) to 1808 (individuals were facing in

opposite directions ¼ low alignment). Full details of these calcu-

lations can be found in the electronic supplementary materials.

(ii) Movement dynamics of individuals in the shoals
The above measures determine the spatial organization of fish

shoals, but do not capture how individuals are moving and
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interacting within them. To assess how individuals were moving

and interacting in the shoals, we first calculated the speed and

direction of each fish at each time point. From these values, we

then calculated the cross-correlations between an individual’s

speed (or direction) and its nearest-neighbour’s speed (or

direction). Cross-correlations assess how strongly pairs of indi-

viduals copy each other’s speed or direction changes in time,

and we followed established methods described by Nagy et al.
[71]. In brief, we identified the peak of the correlation in speed

(or direction) and the time delay between when two individuals’

speeds (or directions) were most strongly correlated. Higher

peaks of the cross-correlation indicate the two fish were more

strongly correlated in speed (or direction), and shorter absolute

time delays indicate that the two individuals direction were

more synchronized, with individuals adopting the speed or

direction changes of their partner sooner. Because individuals’

speeds (but not direction) were highly correlated in time (i.e.

showed minimal time delays to the peak correlation) we did

not analyse the time-delays between nearest-neighbours’

speeds, but did analyse these delays for direction changes.

Full details of these calculations can be found in the electronic

supplementary materials.
( f ) Statistical analysis
All measures calculated from the fish trajectories were analysed

as response variables in Mixed Models. All models included

the treatment (pile-driving or ambient-sound playback) as a

between-subjects term, and the half of the trial (1st or 2nd) as a

within-subjects term. The interaction between these two fixed

terms was included in the initial models, but was removed

where it was non-significant and models were re-run with

main effects only. All models included fish identity nested

within trial (which is equivalent to the group the individuals

belonged to) as the random term. The average difference between

fish perpendicular or parallel to their direction of travel, the bear-

ing of the nearest neighbour in-front or behind, and the

difference in heading between nearest neighbours were analysed

for each fish using negative binomial Generalized Linear Mixed

Models (GLMMs), as the data were typically right skewed. For

all GLMMs, the dispersion parameter was checked to be approxi-

mately equal to 1 (more than 0.5 and less than 2) using

Generalized Linear Models with the same model structure but

without the random effects. The variance function for the nega-

tive binomial models is m � (1 þ m/k), for k . 0 (i.e. variance is

approx. equal to the mean for m�k and proportional to the

mean squared for m�k), where m is the mean and k is the

shape parameter for a negative binomial distribution.

The remaining response variables were analysed using

Linear Mixed Models (LMMs). The median speed and the

mean time delay that maximized the directional correlation

with the nearest neighbour of each fish were analysed without

transforming these response variables. The mean distance to

the centroid and modal nearest-neighbour distance for each

fish were log10 transformed before analysis. The mean maximum

speed correlation and mean maximum directional correlation

with the nearest neighbour for each fish were transformed by

subtracting the correlation from one and then applying a log10

transformation (i.e. log10(12correlation coefficient)). For all

LMMs, the residuals from each model were checked to ensure

normality (using QQ plots) and homoscedasticity (using the

residuals plotted against the fitted values). The variance function

here is Var(m) ¼ 1. Owing to correlations between speed and

maximum speed and directional correlations, and between

speed and the time delay that maximized the directional corre-

lation, the models that analysed these response variables were

repeated with the fish’s speed as an additional main effect to

control for the correlation of speed with the response variables.
3. Results
(a) Spatial and directional organization of the shoals
The spatial structure of the shoals changed in both the ambi-

ent-sound and pile-driving playbacks. There was an

interaction between treatment and the half of the trial

when investigating group cohesiveness (LMM: F1,118 ¼ 4.44,

p ¼ 0.04; electronic supplementary material, table S2a).

When the ambient-sound playback was initiated, the mean

distance of individuals to the group’s centroid decreased,

whereas this distance increased when the pile-driving

playback treatment was initiated. Similarly, the modal

nearest-neighbour distance decreased in the ambient-sound

playbacks, whereas this distance increased in the pile-driving

playbacks (interaction between treatment and trial half:

F1,118 ¼ 14.88, p , 0.001; figure 1a; electronic supplementary

material, table S2b).

To investigate in more detail how the distances between

fish in the pile-driving playback increased, we assessed the

relative positions that individuals adopted next to their near-

est neighbour. Individuals tended to position themselves in a

lattice formation, with nearest neighbours most frequently

being found at either 438 or 1338 in front or behind the

focal fish, respectively, and to the left or right, rather than

directly in front or behind one another (figure 1b). During

both playback treatments, the bearing angle to the nearest

neighbour moved closer to 908, indicating that fish were

more likely to be observed side-by-side compared to before

the playbacks were initiated (GLMM, effect of trial half on

angle to neighbour in-front: x2 ¼ 11.22, d.f. ¼ 1, p , 0.001;

electronic supplementary material, table S2c; and angles to

neighbour behind: x2 ¼ 12.78, d.f. ¼ 1, p , 0.001; electronic

supplementary material, table S2d). The distance between

fish in this direction (i.e. the distance fish were apart perpen-

dicular to their direction of travel) increased in both the

ambient-sound and pile-driving playbacks, but this effect

was larger in the pile-driving playback than the ambient-

sound playback (interaction between treatment and trial

half: x2 ¼ 7.72, d.f. ¼ 1, p , 0.01; electronic supplementary

material, table S2e).

The angular difference in heading between nearest neigh-

bours also increased in both treatments, but this effect was

larger in the pile-driving playback than in the ambient-

sound playback (GLMM, interaction between treatment and

trial half: x2 ¼ 7.99, d.f. ¼ 1, p , 0.01; figure 1c; electronic

supplementary material, table S2g).
(b) Movement dynamics of individuals in the shoals
The speed of fish decreased when both the ambient-sound

and pile-driving playbacks were initiated, but this effect

was larger in the pile-driving playback (LMM, interaction

between treatment and half of trial: F1,118 ¼ 32.53, p ,

0.001; figure 2a,b; electronic supplementary material, table

S3a). The maximum correlation between nearest-neighbours’

speeds also decreased in both playback types, but again this

effect was larger in the pile-driving playback (interaction

between treatment and half of trial: F1,118 ¼ 46.43, p ,

0.001; figure 2c; electronic supplementary material, table

S3b). Repeating the statistical model with speed included as

a covariate did not change this finding (F1,132 ¼ 20.61, p ,

0.001; electronic supplementary material, table S3c).
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The maximum correlation between nearest-neighbours’

directions in time decreased when the playbacks were

initiated, but this effect was stronger in the pile-driving play-

back (LMM, interaction between treatment and trial half:

F1,118 ¼ 11.14, p , 0.01; figure 2d; electronic supplementary

material, table S3d). This result held when including speed

as a covariate in the model (F1,132 ¼ 4.23, p ¼ 0.04; electronic

supplementary material, table S3e), indicating that larger

reductions in speed in the pile-driving treatment could not

solely explain this result. The time delay between nearest-

neighbours’ maximum directional correlations also increased

more in the pile-driving playback than in the ambient-sound

playback (interaction between treatment and trial half:

F1,118 ¼ 14.57, p , 0.001; electronic supplementary material,

table S3f). However, this result could be explained based

on the larger reductions in the speed of fish during the

pile-driving playback (interaction between treatment and

trial half when speed included as a covariate: F1,132 ¼ 2.65,

p ¼ 0.11; electronic supplementary material, table S3g).

In other words, larger reductions in speed in the pile-

driving playback also caused larger delay times between

nearest-neighbours’ maximum directional correlations.
4. Discussion
Both pile-driving and ambient-sound playbacks affected the

spatial and directional organization, as well as the coordi-

nation of seabass shoals, but these effects were often more

pronounced when there was additional anthropogenic

noise. In particular, the distance between fish increased

more, and the directional and speed organization of the

shoals decreased more during the pile-driving playbacks

compared with the ambient-sound playbacks. Noise from

the pile-driving treatment therefore caused significant

changes to how individuals coordinated their movements

with near neighbours, ultimately affecting the structure of

the shoals. While most studies have concentrated on individ-

ual behavioural responses to anthropogenic noise, this study

provides conclusive evidence that the social interactions of

individuals within groups are also impacted by added noise.
Our experiment using both ambient-sound and pile-

driving playbacks highlights that both sound types impacted

the structure and dynamics of fish schools. The simple

addition of sound beyond current baseline levels, therefore,

impacts the shoaling behaviour of fish regardless of its

source (i.e. ambient sound or pile-driving noise). Indeed,

across sensory modalities, sensory systems are highly res-

ponsive to sudden changes in background conditions [72],

as this reflects information about changes in the environment.

Changes in behaviour in both treatments, such as reductions

in speed, may therefore reflect increased alertness due to

changes in environmental conditions. This highlights the

importance of relevant controls that should be used during

these types of playback experiments. Changes in the fish’s be-

haviour between the 1st half of the trial (no playback) to the

2nd half of the sound (playback), however, were typically

much larger in the pile-driving compared to the ambient-

sound playback. When the ambient-sound and pile-driving

playbacks changed the behaviour of the fish in the same

direction, all effect sizes of these changes (comparing changes

in the behaviour of the fish between the 1st and 2nd half of

the trials) except one ranged between 0.75 and 1.18 (see elec-

tronic supplementary material, table S4), indicating the

differences between the playbacks were medium to strong

effects [73]. Neo et al. [65] found that fish exposed to impul-

sive sound took longer to recover (return to swimming

closer to the water’s surface) compared to continuous noise

[26]. This suggests that the temporal structure of a sound

source, as well as the frequencies and amplitude of it, could

have an important influence on behavioural responses to

that source. Further work is needed on how the temporal, fre-

quencies, and amplitude of anthropogenic noise sources

affect behaviour.

Pile-driving playback decreased the cohesiveness of sea-

bass groups, which is the opposite to what would be

expected if the fish treated the additional noise as a predation

threat [57]. Under predation threat, groups are expected to

become more cohesive as individuals reduce risk through

dilution and confusion effects [74–78]. Instead, fish in our

experiment increased their distance to the group’s centroid

and between nearest neighbours. We also found that the

http://rspb.royalsocietypublishing.org/
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speed and directional coordination of nearest neighbours

decreased more in the pile-driving playback compared to

the ambient-sound playback. Again, this is the opposite to

what would be expected under increased predation threat,

where individuals should be highly sensitive and coordinate

their movements more strongly with near neighbours [48,49].

Instead, our findings are consistent with the idea that pile-

driving playback disrupts the cohesion and coordination of

individuals in the shoals.

Coordination of the movements of individual fish is

thought to be modulated primarily by lateral-line and

visual sensory inputs [41,46]. If detection of nearest-

neighbours’ movements through the lateral line were

obstructed by the playbacks, this could explain reductions

in directional and speed correlations between nearest neigh-

bours. This would effectively be an example of masking, a

uni-modal effect of additional noise, although that has

mostly been considered to date with respect to vocal com-

munication [79]. Alternatively, even if lateral-line

information was not disrupted, additional noise may still

have impacted the ability of individuals to process sensory

information through cross-modal effects. Cross-modal effects

occur when the processing and effective use of information is

negatively affected by additional noise as a consequence of

stress and/or distraction [15]. These cross-modal effects

have recently been demonstrated in other species [15] and

are well known in the cognitive sciences [80]. Therefore,

cross-modal effects could also occur when attempting to
coordinate movement with near neighbours, ultimately

affecting the structure of these groups. It may be possible to

assess whether uni-modal, cross-modal, or both effects influ-

ence the schooling behaviour of fish by knocking out the

functionality of the lateral-line system using aminoglycoside

antibiotics [42]. By then assessing whether the schooling be-

haviour of fish was impacted further by the addition of

noise, this would provide evidence that noise impacts school-

ing behaviour even if sound could not be detected with the

lateral-line system. More generally, cross-modal effects can

be assessed by measuring whether behavioural responses to

stimuli that have no auditory component (e.g. visual cues

or olfactory cues) are impacted by sound, as has recently

been investigated [15].

Disruption to how individuals interact in groups could

impact some of the associated benefits of group living,

including a reduced predation risk and access to social infor-

mation [27,28]. Individuals in less cohesive groups are

attacked more frequently than individuals in more cohesive

groups [78], and we observed that individuals increased

their distances between one another more in response to

the pile-driving compared to the ambient-sound playback.

Individual fish in shoals also gain information from others,

for example, about a detected threat, by copying the speed

and directional changes of near neighbours [49,81]. Similarly,

the collective ability of groups to sense complex gradients in

their environment is modulated by how individuals copy the

speed changes of others [50]. How individuals respond to
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each other’s movements determines the likelihood and extent

of information propagation in animal groups [82], and dis-

ruptions by anthropogenic noise could have considerable

ecological implications for group-living species. Non-lethal

effects such as these are crucial for our understanding of

how noise pollution impacts the behaviour and survival of

animals, and this will be important to consider for animals

in natural conditions with real sound sources.

Our experiment focused on responses to a single rela-

tively short-term noise exposure, as is the case with the

majority of fish research to date (see [53,83] for exceptions).

For a full understanding of the impacts of anthropogenic

noise, longer-term studies are also needed, because animals

may be able to compensate during quieter periods and

responses may change with repeated or chronic exposure

[53,84–86]. Ideally, those future studies should be conducted

in natural conditions with real-world sound sources [16] to

ensure maximum ecological and acoustic validity [55]. How-

ever, captive experiments such as ours do provide a valuable

stepping stone in the study of environmental stressors,

including noise [16,34,87], not least because of the ability

to control tightly the conditions and to collect detailed

individual-based data.

Our work highlights the potential for noise from anthro-

pogenic sources to disrupt the coordination of shoaling fish.
Whether this translates to functional consequences for

fishes, such as changes in feeding success or predation risk,

will now need to be assessed. Nevertheless, our results

demonstrate that sound can influence the spatial and direc-

tional organizational characteristics of fish shoals, and as

such, should be considered when environmental impact

assessments of construction projects in marine or freshwater

environments are conducted.
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Chaté H, Theraulaz G, Levin SA. 2012 Deciphering
interactions in moving animal groups. PLoS Comput.
Biol. 8, e1002678. (doi:10.1371/journal.pcbi.
1002678)

82. Sumpter D, Buhl J, Biro D, Couzin I. 2008
Information transfer in moving animal groups.
Theor. Biosci. 127, 177 – 186. (doi:10.1007/s12064-
008-0040-1)

83. Nedelec SL, Mills SC, Lecchini D, Nedelec B, Simpson
SD, Radford AN 2016 Repeated exposure to noise
increases tolerance in a coral reef fish. Environ.
Pollut. 216, 428 – 436. (doi:10.1016/j.envpol.2016.
05.058)

84. Bejder L, Samuels A, Whitehead H, Finn H, Allen S.
2009 Impact assessment research: use and misuse of
habituation, sensition and tolerance in describing
wildlife responses to anthropogenic stimuli. Mar.
Ecol. Prog. Ser. 395, 177 – 185. (doi:10.3354/
meps07979)

85. Wale MA, Simpson SD, Radford AN. 2013 Size-
dependent physiological responses of shore crabs to
single and repeated playback of ship noise. Biol.
Lett. 9, 20121194. (doi:10.1098/rsbl.2012.1194)

86. Bruintjes R, Radford AN. 2014 Chronic playback of
boat noise does not impact hatching success or
post-hatching larval growth and survival in a cichlid
fish. PeerJ 2, e594. (doi:10.7717/peerj.594)

87. Scott GR, Johnston IA. 2012 Temperature during
embryonic development has persistent effects on
thermal acclimation capacity in zebrafish. Proc. Natl
Acad. Sci. USA 109, 14 247 – 14 252. (doi:10.1073/
pnas.1205012109)

http://dx.doi.org/10.1016/j.biocon.2014.07.012
http://dx.doi.org/10.1038/nmeth.2994
http://dx.doi.org/10.1098/rspb.2012.2564
http://dx.doi.org/10.1073/pnas.1109355108
http://dx.doi.org/10.1073/pnas.1109355108
http://arxiv.org/abs/1601.08202
http://arxiv.org/abs/1601.08202
http://arxiv.org/abs/1601.08202
http://dx.doi.org/10.1371/journal.pcbi.1002915
http://dx.doi.org/10.1371/journal.pcbi.1002915
http://dx.doi.org/10.1038/nature08891
http://dx.doi.org/10.1086/285308
http://dx.doi.org/10.1038/293466a0
http://dx.doi.org/10.1038/293466a0
http://dx.doi.org/10.1098/rsos.160564
http://dx.doi.org/10.1098/rsos.160564
http://dx.doi.org/10.1093/beheco/arm109
http://dx.doi.org/10.1093/beheco/arm109
http://dx.doi.org/10.1086/597219
http://dx.doi.org/10.1086/597219
http://dx.doi.org/10.1126/science.1218919
http://dx.doi.org/10.1126/science.1218919
http://dx.doi.org/10.1016/S0065-3454(05)35004-2
http://dx.doi.org/10.1016/j.cognition.2008.09.005
http://dx.doi.org/10.1016/j.cognition.2008.09.005
http://dx.doi.org/10.1371/journal.pcbi.1002678
http://dx.doi.org/10.1371/journal.pcbi.1002678
http://dx.doi.org/10.1007/s12064-008-0040-1
http://dx.doi.org/10.1007/s12064-008-0040-1
http://dx.doi.org/10.1016/j.envpol.2016.05.058
http://dx.doi.org/10.1016/j.envpol.2016.05.058
http://dx.doi.org/10.3354/meps07979
http://dx.doi.org/10.3354/meps07979
http://dx.doi.org/10.1098/rsbl.2012.1194
http://dx.doi.org/10.7717/peerj.594
http://dx.doi.org/10.1073/pnas.1205012109
http://dx.doi.org/10.1073/pnas.1205012109
http://rspb.royalsocietypublishing.org/

	Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals
	Introduction
	Material and methods
	Experimental subjects
	Recordings and playbacks
	Acoustic analysis
	Experimental protocol
	Response measures
	Spatial and directional organization of the shoals
	Movement dynamics of individuals in the shoals

	Statistical analysis

	Results
	Spatial and directional organization of the shoals
	Movement dynamics of individuals in the shoals

	Discussion
	Ethics
	Data accessibility
	Author’s contributions
	Competing interests
	Funding
	Acknowledgements
	References


